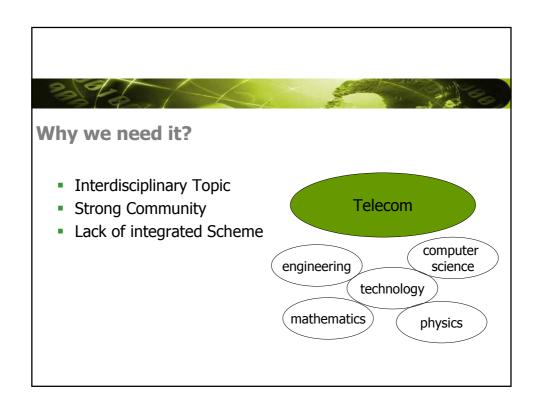


A Research Ontology for Telecommunications


Kerstin Zimmermann physik.org Vienna

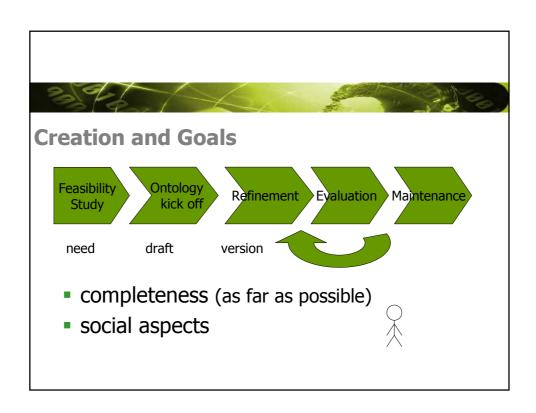

WissOrg 06, 3-5 July, Vienna

Table of Contents

- Status Quo
- Ontology Creation
- Requirements
- Methodology
- First version
- Outlook

Coverage

- New topics (up to date)
- Including well-know keywords
- Alphabetic order of terms
- Interdisciplinary context

Easy to (re)use

- Related areas close to each other
- Flat hierarchy for human browsing
- Wide range of users, different levels (students, experts, technicians, public)
- Same cardinal number
- Documentation like naming and meta information

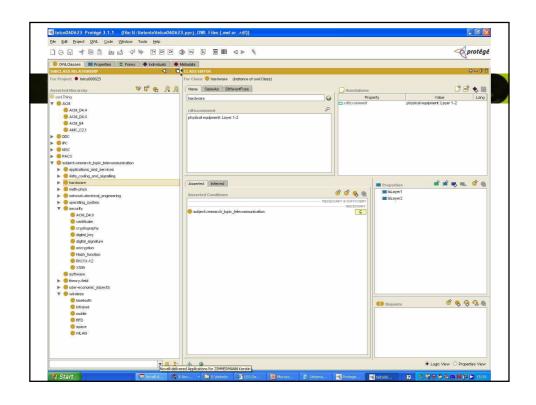
Integration of existing

- classification schemes, thesauri
- ontology concepts
- telecommunication models (layer)

No	Description	
7	Application	
6	Presentation	
5	Session	
4	Transport	
3	Network	
2	Data link	
1	Physical	

Methodology

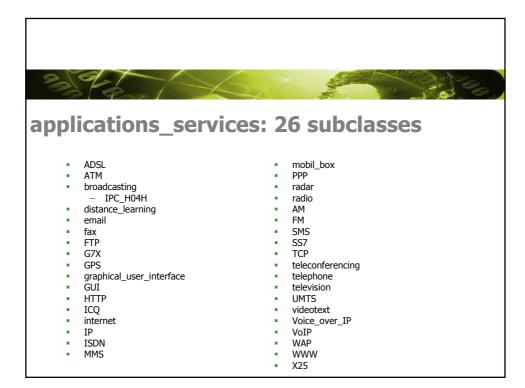
- 1. Identifying the relevant terms of the domain
- 2. Grouping them according to their fields / meanings
- 3. Mapping other classes to it

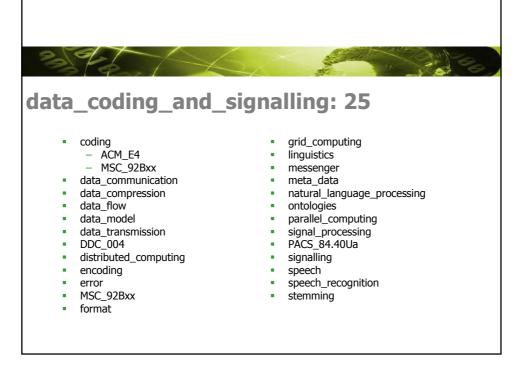

Sources

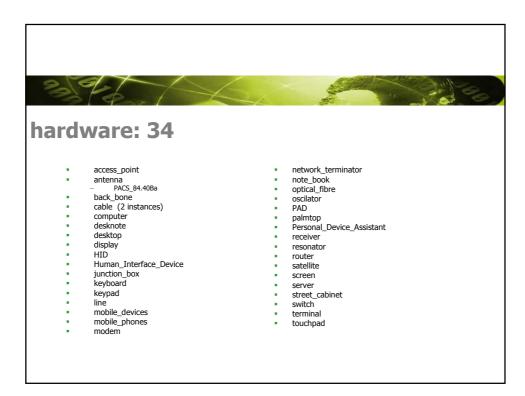
- websites / homepages
- keywords in their publications
- Scirus (for scientific information only),
- visual thesaurus, UNESCO General Thesauri, RosettaNet, dandelion
- classifications schemes

 - ACMDDC (techology)
 - IPC

 - MSC (methods and algorithm)PACS (Electronics, radiowave and microwave)


10 Main Classes	Description	Layer
 applications_and_services data_coding_and_signalling hardware math-phys network-electrical_ engineering 	techniques and protocols special point of interest physical equipment physical effects and their mathematical description technical infrastructure	4-6 2 1-2 1
 operating_system security theory-field user_and_economic_aspects wireless 	special point of interest special point of interest theoretical description special point of interest special point of interest	





Naming conventions

- All classes names are written with a small initial letter e.g. hardware
- abbreviations are written all in capital letter e.g. UMTS
- In order to void blanks in the terms (not computer readable) underlines are used e.g. operating_system
- Special characters like / have also to be left out.
- Double class names are codes with a hyphen e.g. math-phys.

math-phys: 23 pule_technique - IPC_H03K allgorithm (1 instance) amplifier resonance IPC_H03F DDC_510 DDC_530 sampling spectrum stabilisation frequency sychronisation band transformation (1 instance) range transmission function - IPC_H04B impedance trigger modulation wave ICP_H03C mirco noise oscilation

network-electrical_engineering: 27

- architecture
 - AMC_C2.1
- carrier
- celluar
- circuit
 - MSC_94Cxx
- client
- collisions
- design
 - AMC_C2.1
- destination
- electro_acustics
- hub
- IP_number
- LAN
- link

- load
- MSC_94Cxx
- p2p
- paket
- payload
- performance
- platform (6 instances)
- producer-distributor (5 instances)
- remote_control
- routing
- session
- subscriber
- switching
- technology
- traffic

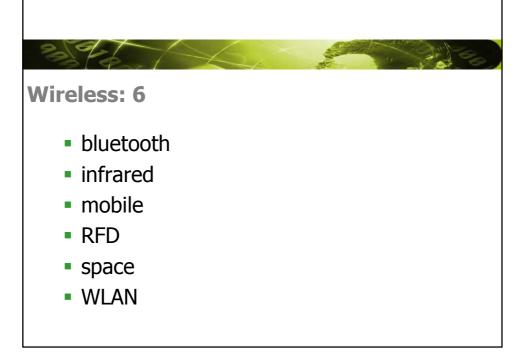
operating_system = software = platform

(6 instances)

- ACM_D4.4
- producer-distributor (5 instances)

Security: 9

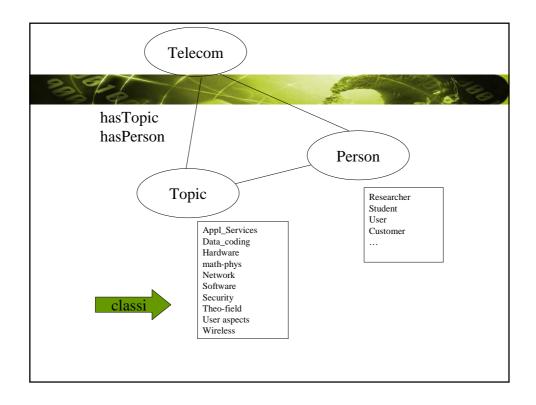
- ACM_D4.6
- certificate
- cryptography
- digital_key
- digital_signature
- encryption
- Hash_function
- PKCS1-12
- X509



theory-field: 8

- communication_theory
 - DDC_003.5
- information_science
 - PACS_89.70c
- information_theory (1telephony instance)
 - ACM_E4
 - DDC_003.54
 - entropy
 - error_probability
- logics

- telegraphy
- telematics
- telemetry
 - PACS_84.40Xb
 - - IPC_H04M



First Version, work in progress

- 1 concept
- 10 main fields / classes
- 200 subclasses
- 5 classification schemes
- 1 layer mode

Outline of further Ontologies (concepts)

- Organisation
- Event
- Location / Address
- Publication
- e-Learning
- Product
- Service

Ontologies

- **FOAF** (Friend Of A Friend) for communities

 Describing homepages of people, the links between them and the things they create and do

 Coverage: Person as 1 concept with 10 properties
- SWP (Semantic Web Portal) Ontology for Scientific Portals
 Coverage: Person (Agent and Organisation), Publication, Conference as the 3 main concepts
 68 classes, 21 data properties, 57 object properties
- MarcOnt for Digital libraries
 Ongoing and still under construction, do mapping of the three formats Marc21, DC, BibTeX

Thanks for your attention

- Refs, online Version http://www.physik.org/telecomonto
- Contact
 - kerstin@physik.org